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SUMMARY

Modern ntlperical methods for the optimization of large dis-

cretized systems are now well developed and highly efficient in

the case of thin wailed elastic structures modeled by finite

elemenLs. Howcver, this is not yet true for structures whose

components are subject simul taneiusly to bending and extcnsion

loads. In this paper, the idea of Generalized Optimality Cri-

terion (GOC), set forth in previous final scientific reports

for bar, membrane and pure bt-nding elements, is extended to) deal

with general beam and flat shell elements. The modifications

brought to the GOC result in explicit approximations for the

behavior constraints that are still correct up to tthe first order,

but that exhibit a more complex algebraic form. Indeed thust,

explicit expressions are no longer merely linear in the recipro.,,l

design variables. However they continue to be additively sepa-

rable and therefore, dual methods remain fully applicable, just

as in the original statement of the GOC approach. Numerical

examples will be offered to demonstrate the efficiency of the

method presented.



I.

I. INTRODUCTION

The optimum design of any significant structure is the result

of a delicate compromise between many complex factors. Some are K
rational and can be quantified, such as the strength of the

structure, its natural frequencies, its weight, Some are

just as rational but are difficult to quantify, such as the ex-

perience of the designer in a given technology. Some others are,

much less rational, like styling, but are just as important for

the final goal of the process, which is the marketing. Naturally

a good designer considers structural optimization as a technique

that should take into account all possible aspects of the design.

Consequently the designers are often reluctant to the concepts

of structural optimization developed in connection with finite

element programs.

However a more detailed examination of the design process

leads to isolate a phase that appears frequently, during which

the shape of the structure is more or less frozen and the problem

is limited to giving adequate dimensions to the various members.

Such a situation is often encountered in the aerospace, naval

or automobile industries, where the external shapes are, to a

large extent, dictated by aero- or hydrodynamic considerations,

or by styling, while internal forms are often determinated by

various other non structural requirements. If the ultimate goal

of the designer can be identified as corresponding to the minimi-

zation of an explicit function of the member sizes, and if the

limitations on the design can be defined as, eventually implicit,

functions of the member sizes too, such as displacements, stresses,

eigenfrequencies, etc..., then the problem is tractable by auto-

matic algorithms. They allow the designer to speed up signifi-

cantly this part of the design process and to explore more sys-

tematically the various feasible designs.

The optimization problems, which in fact should be called

automatic sizing problems, are especially crucial when complex

structural forms are involved, when flexural forces cannot be
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neglected, and when composite materials such as reinforced

resins are employed. In these cases it becomes difficult, if

not impossible, for the designer to have an intuitive under-

standing of the structural mechanics that is sufficient to Ivid

to optimal sizing of the various members. Furthermore, the de-

signer is most of the time unable to take into account global

constraints in the structure, like global flexibility, restric-

tion on displacements, frequencies of vibration, global buckling

modes, etc... It is only possible to verify a posteriori that

such constraints are satisfied. Again these global constraints

become more important in the context of highly, indeterminate

structures. In the aerospace industry, the necessity of desi-

gning high performance structures has motivated significant re-

search efforts to derive algorithms permitting a rapid and svs- $
tematic exploration of the design space to determine the optimum

material utilization.

It is worth pointing out that optimization methods should

be considered as especially useful in the preliminary design

phase. Using them when the design is practically frozen, with

the hope of an ultimate improvement, is often disappointing.

This i'; due to the fact that the optimization of a detailed design

implies the formulation of a large number of constraints, some

of which are not easily quantified. At the preliminary design

stage, however, the constraints are usually more global and

therefore more easily handled by the available formulations.

The structural optimization problem considered in this report

consists of the weight minimization of a finite element model

with fixed geometry and material properties. The design vairiable ;

are taken as the transverse sizes of the structural members,

namely, the cross-sectional areas of bar and beam elements and

the thicknesses of membrane, plate and flat shell elements.

The mathematical programming problem to be solved has the fol-

lowing form :

n
minimize W = i , a ()

subject to h.(a) > 0 j = im (2)

a. i a. a. (3)
1 1 -I
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The a. 's denote the n design varial les. They correspond to1

member sizes of either individual finite elements, or, if

design variable linking is used, of groups of finite elements.

The structural weight W is a linear objective function, because

the ki's are constant coefficients representing the specific

weight times either the element length (bars and beams) or the

element area (membranes, shear panels, plates and flat shells).

The inequalities (2) are the behavior constraints, which impose

limitations on quantities describing the structural response,

for example, the stresses and displacements under mul tiple

loading cases, the natural frequencies, the buckling loads,

etc... The design variables are also subjected to the side

constraints (3), where a. and a. are lower and upper limits tiit

reflect fabrication and analysis validity considerations.

Standard minimization techniques can be applied to the non-

linear programming problem (1-3). However this problem exhibits

some characteristics that make it complicated when practical

structural design applications are considered. The essential

difficulty arises from the implicit nature of the behavior

constraints (2), in that their precise numerical evaluation for

each particular design requires a complete finite element ana-

lysis. Since the solution scheme is iterative, it involves a

large number of structural reanalyses. Therefore the computa-

tional cost often becomes prohibitive when large structural

systems are dealt with. However a powerful design procedure

has now emerged, which consists in replacing the initial problem

with a sequence of simple explicit problems. In the next sec-

tion this approach will be briefly reviewed by restricting the

formulation to thin walled structures idealized by bar/membrane

elements. A much more detailed presentation can be found in a

previous report 1 I . It will be shown that the behavior cons-

traints can be approximated either by using virtual load consi-

derations (optimality criteria approach) or by using first order

Taylor series expansion with respect to the reciprocal design

variables (mathematical programming approach). Applying a dual

solution scheme to each explicit problem generated in sequence

naturally introduces the concept of a generalized optimality

criterion.
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Subsequently sections 3 and 4 will be concerncd with struc-

tural models that are capable of carrying flexural forces. For

beams and plates in pure bending, adequate intermediate varia-

bles can be selected, in terms of which high quality explicit

approximations for the behavior constraints can still be gene-

rated by linearization. The idea of generalized optimalitv

criterion remains fully valid and it keeps its interpretation

in terms of energy densities in the structural members. Section

3 is a summary of results presented in a previous report (ref.

[2 1 , section 6).

The essential problem is addressed in section 4. It consists

of the establishment of the generalized optimality criterion

approach in the general case where the structural members work

both in extension and flexion (beam and flat shell elements).

For displacement constraints, it is no longer possible to select

- suitable intermediate variable for the linearization process,

however, the virtual load procedure permits obtention of high

quality, first order explicit approximations of the behavior

constraints. It will also be shown how to proceed for stress,

frequency and buckling constraints.

The explicit approximations still exhibit a separable alge-

braic form and therefore dual methods remain appiicable. iowever

some difficulties might happen due to the lack of convexity in

the explicit subproblem. Section 5 will describe how to solve

the explicit subproblems by using dual methods. Finally some

applications will be offered in section 6 to illustrate the power

and generality of the approach presented.



2. GENERALIZED OPTIMALITY CRITERION: FOR THIN WALLEID STRUCTURES

This section summarizes some results obtained in a previous

work [ I I for structural models made up of bar, membrane and

shear panel elements, which are quite adequate for idealizing,

thin walled structures subjected mainly to extension loading.

For this class of finite element models, the structural sti f-

fness matrix exhibits a linear form in the design variables

n n
K . K = Z a. K. (,)

I~ i i 1 1 1

where K., a matrix of constants, represents the stiffn ss jistris1

of the ith element when a. = I. For simplicity, tie fol lwing

discussion is restrict,,d to problems involving constraints on

static stresses and displacements, in which case the behavior

constraints (2) can be written

h. (a) z u. - u. (a) > 0 (5)J Jl .

where u. denotes an upper bound to a response quantity u. (a).l J

(stress, nodal displacement, relative displacement).

Most of the optimality criteria approaches (e.g. 1 3 1 ), as

well as the generalized optimality criterion (COC) set forth in

Ret. I I I , use the virtual load technique to generate explicit

approximations of the stress and displacement constraints. II-

troducing a virtual load vector conjugated to the response quan-

tity uj (unit load for a nodal displacement), it follows that

u can be expressed as the sum of the contributions of each fi-

nite element

T n cij
uj m q K qj E a (6)

j J 1=! a.

wi th

c j (qT Ki 3 2j a
-i (qK q.) a. (7)

1 J 1



In these expression- q and q, are respective Iv tht' real ,nd

vi rtual displacement vectors and K. is the element sti fn('-:;
1

matrix appearing in (4). It can be seen from (7) that tht. -(,(!i

f i Ci ' 1tS c a. r e r,, 1At edl to Lhe vi tLual strai n .n( '' detisit

in the structural meml)ers. The c..'s are constant coeffici(,nts
ij

in the case of a statically determinate structure, so that (h)

represents then the exact explicit form of the response quan-

Ci ty u. . In the case of a statically indeterminate structure.,3
the c.. 's depend implicitly on the design vd~iab]es, because

structural redundancy produces redistribution of the internal

forces when the member sizes are modified. Therefore the iol-

lowing explicit constraints

I - -n cij

h.(a) u. - 0Sj i .] a. 0()

constitute in general approximate forms of the original cons-

traints (5). As shown in Ref. 1 I 1 , the basic idea in the op-

timality criteria approach can be viewed as transformin , the

initial implicit problem into a sequence of explicit subpreblenms.

Each explicit problem results from replacing the behavior cons-

traints (2) by their arproximate forms (8).

On the other hand, the mathematical programming approach to

structural optimization, after a period of unefficiency, has

finally evolved into a powerful and now well established de.sign

procedure which is also based upon explicit approximations o,

the behavior constraints 14, 5, 6 J. The key idea is to linoa-

ri ze the behavior con' t raints with respect to the reti )ro(-;i I

design variables

1 a.

Justification for this change of variables lies in the fact

that the constraint surfaces can be shown to be very shallw

and close to planes in the reciprocal design variable space.

Therefore the linearized forms of the constraints are usually

high quality approximations. They are obtained by using first

order Taylor series expansion in terms of the recliprocal va-

riables x.

I.i



h . x) u. - u . ( C ) (x. - x. ) f
LI I .

where the upperscript o denotes quantities evalualtId it t h
0

actual design point x , where the structural analvsis is; p, r

formed. N e'e that the finite element analysis caplibi i t,, t

include auxiliary sensitivity analyses for evaluatin,,, the I i rSt

partial derivatives of the response quantities. Most often the

well known pseudo-loads technique is employed 17 ].

It has been shown in a previous report I I I that the e:.:pl cit

approximations of the behavior constraints used in both the

optimality criteria and mathematical programming approaches (hcjs

8 and I1U, respectively) are ident-cal. Indeed Lhc viruiil dI M Ili

energy densities c.. employed in the optimal i tv cri tev ia appro-

aches are nothing else that the gradients of the respon!e quan-

tities with ruspect to the reciprocal variables

lu.
c.. J(1I

i j 5x.i

Furthermore the definition of the c.i's following from the vir-ii

tual load technique (see Eq. 7) clearly indicates that

n0 nC0 o. .X c x. ( lil
.1 i= 1  i~j

Therefore (10) can be rewritten

n
- 0hY(x) u. - .7 c. x. > 0 (1i.

h j i c ij i

which is equivalent to (8) when recast in terms of the dirct

variables a.. It is thus apparent that a unified approach to

structural weight minimization of finite element systems has

emerged, which consists in replacing the initial problem (1-3)

with a sequence of explicit approximate - or linearized - pro-

blems of the following form

n
minimize W = i l 9i a, 1

n c . o
subject to u. i -a

a 1
a. --4 a. a. (to)

i I -I



The GOC statement results from wri tin-g the KUHN-TUCKER optiml i tv

conditions for the problem (14-16). This yields an explicit

expression for the design variables a. in terms of the I arYjnji-I!)

multipliers r. associ ated with the behavior s, istraj t* ( ,I

(see Ref b, 8 j for more details)

m 2.m _
a. 1  c r.) if Z.a. < c.. r. " .aT 17

m

a aJ i C- .i 1< ,J

a. = a. if r c.. r. a .a 1P1 -2. j'=l ij Oj 1-1

a. = a. if , c. . r. -> .a. (1i)
I. I jil 13 3 i

Of course the lagrangian multipliers must be nonnegative, more

precisely, they must satisfy the complementary conditions

n c.
r. > 0 if X 3 i. (20)j i= 1 a. .

1

n C. -

r.= 0 if i2a. 1i a
3~1

In order to compute the lagrangian multipliers satisfying (20-

21), a,, interesting approach is to resort to dual methods, which

leads to maximize the lagrangian function considered as a func-

tion of the lagrangian multipliers - or dual variables - only

(see Refs 1 1, 6, 8 1 and section 5). Once the solution of the

dual problem has been found, the corresponding optimal desi.n

variables are easily computed from the explicit optimality cri-

teria relations (17-19). Note that the design variables can be

separated into a group of active (or free) variables (see Eq. 17)

and a group of passive (or fixed) variables (see Eqs. 18 and 19).

This subdivision into active and passive design variable groups

is classical in the optimality criteria approaches 1 3, 9 ] . It

corresponds to the fact that the dual space - i.e. the space of

the lagrangian multipliers r. - is partitioned into several re-

gions separated by planes across which the second derivatives

of the dual function are discontinuous [6, 8 1.
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The whole process of combining; the linearization of the

behavior constraints with respect to the reciprocal design

variables and a dual solution scheme can be viewed as a gene-

ralization of the optimality criteria approaches. It i ; i mper-

tant to mention that this basic approach of conve t iint, the

initial problem into a sequence of explicit subproblems is now

widely recognized [6, 101 and it is routinely employed for

large scale industrial applications [1 1.



3. PURE_ BENDING ELEMENTS

In this section attention is focused on discretized models

made up of pure beam and plate elements subjected to flexuri;l

loads only (for more details, see section 6 of Ref. 1 2 J).

The stiffness matrix of such a bending element is usually not

merely proportional to its cross-sectional size and therefore

the optimization strategy reviewed in the previous section most

be modified. The way to deal with a beam element subjected to

uniaxial bending depends upon the relationship between the prin-

cipal moment of inertia I and the cross-sectional area a. A

wide variety of situations is taken into consideration by adop-

ting the following relation

I = c a p  (22)

where c is a cons tant that depends onl y on the shape of the

beam cross-section and p is a positive number.

Most of the time p is taken as ;in integer number, equal to

I, 2 or 3. The case p = 1 correspciids to thin wal led beams,

for ex.imple, sandwich beams, pipes vith fixed diameter and va-

riable thickness, etc... The COC approach of section 2 remains

then fully applicable, since the stiffness matrix continue; to,

be linear in the design variables. The case p 2 is that of

beams with uniformly varying cross-section. The shape of the

cross-section is kept unvariant while its area is modified durin?

redesign (dilatation or contraction). Finally the case p = 3

is concerned with beams having full cross-section whose height

varies while other sizes are fixed. For a beam subjected to

pure bending, the flexural rigidict\ is proportional to the mo-

ment of inertia and therefore, in i finite element context, the

structural s ti f Iles s TaLri x exhi i, 1i1_t the t o I I owi ;,,, e I i ci L

form in terms of the cross-sectional areas

nK I K. = E ap K , p 2-t) (21)
i i=l i2

where each matrix K. is independent of the design variables a..1 1
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With regard to plate elements ;ubjected to pure bendin)'.,

two cases must be distinguished. The first case is that oi

sandwich plates with constant core thickness. The sheet thik-

LIcsses constitute then the design variables. Coilseque. lt ly th,.

stiffness matrix continues to depend linearly on the desi)-, 1

variables and the GOC relations (17-21) remain fully appli, able.

The second case is concerned with full plates with variable

thickness. The stiffness is then proportional to the cube ot

the thickness and, in an assembling of plate elements, the re-

lation (22) must be chosen with p = 3.

By assuming that the structural discretization is mad. uLp

entirely of elements of the same type, the stiffness matrix

exhibits the form (23), where p takes on the same valute foi

each member. In these circumstances, the COC can be derived

just as in the case of thin walled structures, by' adopting a

change of variables tending to reduce the nonlinear character

of the cons traints:

.- K(24 )
i p

a.
1

The next step is to linearize the constraints with respect to

the new variables xi, which requires gradient evaluation (see

Eq. 10). Restricting again the discussion to stress and dis-

placement constraints, it is easily shown (see Ref. 12 1) that

the first order Taylor series expansion (I0) reduces to the

form (13), or, when written in terms of the direct variables

(a u. - > 0 (25)

a.
1

IlThe c.. coefficients can be interpreted as the gradients of thet j

response quantities with respect to the intermediate variables

x. defined in (24), but they can also be related to the virtual1

strain energ;ies e.. in the structural members :
ja

T i 2 T ap = . ap
c2p qK.q.a q K. q.a e..a (2b)

1i ql 1i i~ j 1 1. 1



where, by definition,

I iei = q Ki q .' "i

In this connection it should be recognized that vi rtual ],)ad

considerations could directly be employed to derive th( explicit

approximations (25), instead of resorting to first order Taylor

series (see next section).

The optimality criteria equations are very similar to (1/-

19), provided that care is taken of the exponent p appearinl,

in (25). The basic redesign relations for the active design

variables must read as follows :

a. = (P c. P+ (28)
1

where it is understood that the dual variables r. (i.e. tho

lagrangian multipliers) must satisfy the complementarity con-

ditions (see Eqs. 20 and 21). A physical interpretation of the

optimality criterion is obtained by introducing the virtual

strain energy densities per unit weight

e . n
_. 1] (29)

1 1~

where e. , is defined in (27). In terms of the . 's, the opti-

mality criterion (28) takes the "energetic" form

m
" r c.. = constant (30)

In the special case where only one displacement constraint

is specified, the optimality criterion states that the virtual

strain energy density must be the same in each element. In

this simple case, it is possible to solve analytically the ex-

plicit problem and to derive explicit redesign relations in terms

of known quantities. The active design variables can be shown

to be given by

p I +
1- u k k k

0



1 31

while the remaining passive variables are fixed to an upper or

a lower limit (u denotes the contribution of thest, passive
0

variables to the displacement constraint u '- u). It is wolth

mentioning that (31) is well suited for the design of pljtos;

in bending with a single displacement constraint. Since then

p = 3 the redesign relation (31) involves the fourth root of the

coefficients ci, rather than the third root as employed in

Ref. [12 1 on an intuitive basis. Note also that by takin,

p = 1 in (31), conventional redesign relations are recovere.d,

which were devised for trusses 13 1 , sandwich beams I1 I I ,itc-...

It can be concluded that the generalized optimality criteria

approach can easily be extended to deal with pure bending ole-

ments by defining adequate intermediate variables. H igvh qu:lity

explicit approximation'; of the behavior constraints can sti I l be

generated an, the resulting GOC keeps its interpretation in terms

of energy densities ir the structural members. Seeking the de-

sign variables that satisfy the GOC at each redesign stage can

still be achieved efficiently by resorting to dual methods, be-

cause the explicit approximate problem remains separable and

strictly convex when expressed in the intermediate design vari-

ables x.
1



4. FLEXiON-EXTENSION ELEMENTS

When flexion and extension loadings act simultaneously with

comparable intensity at the element level, the definition (2)

of the stiffness matrix can no longer characterize the strtictu-

ral model with sufficient accuracy. To hell) fix ideas, consi-

der a flat shell element made up of a membrane and a plate sta-

cked together. The stiffness matrix of such a flat shell cle-

ment exhibits the form

() 3 (3)

K. = a. K I ). + a. K. (32)

where K. and K. are constant matrices. As a result, in
the COC approach, if the constraints are linearized with respect

to the reciprocal design variables (9), their first order e.xpli-

cit approximations, given by expressions similar to (8), will

be of high quality only if the structural members behave mainly

in extension. On the other hand, if the bending behavior is

dominant, it is better to adopt the change of variables (24),

yielding first order explicit approximations of the form (23)

(with p = 3). As a matter of fact, the true situation is usu-

ally a combination of extension and bending. In a practical

structure, some members work mainly in extension, some in flexion,

and others, simultaneously in flexion and extension. Whence

the idea of using the following explicit approximations, which

should be valid in any situation :

(I) (3)
- n c.. c.

•(a) u. _- + ... j 0 (33)
i a.

where the coefficients c ( I ). . and c ( 3 )  are considered as constant

throughout the redesign phase.

Because it is no longer possible to select appropriate in-

termediate design variables, the explicit approximations ( ' )

cannot be obtained by merely using first order T;avlor series

as in the case of pure bending elements. Htowever an essential

requirement is that these approximations remain correct up to



the first order, despite the fact that they do not resul trom

a strict linearization process. In other words the following

equality must hold
(1) ( 3)

- (a') -_ (a') = 4_ __+ _ ( ,,)ja a. 2 + 3 4

L I (a') (a o )

This condition insures that, at the optimum, the solution to

the explicit approximate problem satisfies the (first order)

optimality conditions of the real problem, that is, the appro-

ximate and real restraint surfaces have the same tangent plane

(see Fig. 1). As a result, the GOC approach should converge

to a true (at least local) minimum weight design. It will be

shown in this section how such first order explicit approxima-

tions can be obtained tor various types of behavior constraints

and structural models.

4.1. Displacement Constraints

The key idea to obtain explicit approximations of the dis-

placement constraints is to come back to the virtual load pro-

cedure, which permits decomposing any static response quantity

into the contributions of each element. The expression (6) can

be rewritten in the more general form

Tn T
u. = q K qj = iE I q K i  q

On the other hand, it can be proved that the gradient of u is

given by (see Ref. [ I ], p. 74)

u. K.
_ - T DK T i

Da. -q -a. q =- q 'a. q j )
1 1 1

Now, for a rather general class of structural models, each ele-

ment stiffness matrix can be assumed to have the following ex-

plicit form in terms of its design variable I 14 I

3 (p)

K. = a p  K 37)1 p~l i i
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where the matrices K p )  are independent of the design variables.1

Note that most often, at least one of the K ) , p = 1, 2, 3, is(2) 1

zero (for example K. 2 )  is zero in the stiffness matrix (32) of

a f la t she I element), Iltrodi,: in ( 7) i t ( ) it a1p,.-1 I

that a convenient expli cit approximation of ; displ act, ment c'n.;-

traint (5) is :

n 3 c.

(a)- - -- > (38)

where the coefficients

c(P = (q T m qj ) a. 2p39
ij 1 I

are assumed to be constant during the current stage. The g,,ra-

dient of this explicit approximate constraint is

Th. 3 p cP.
_ = E j (40)

3ai  p aP+
1

On the other hand, differentiating (37) and inserting the result

into (36) shows that

3u _ 3 p -I T p (41)
Z~- p a. q q.

3a p = I I1

Therefore it can be concluded that the expressions (38) represent

first order explicit approximations, in that they restitute the

exact values of the constraints and their first partial deriva-
o

tives at the design point a where the structural analysis is

made
(P)

n 3 c..
(a ° )  h (a() (42)

-1 1= hI P
(a .

.h. 3 P c P-)

o _) J (a o ) = E 1- 1
(a a a. p I p+I

1 i (a )
i
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An alternative approach is to employ simple linear approxi-

mations in the reciprocal design variables (9) , i.e. the fi rst

order Taylor series expansions (10). Then the explicit subpro-

blem exhibits exactly tile same form (14-16) as in the case of

thin walled structures and dual methods need not be modified -' s

they will be in section 5. Of course, as previously mentioned,

the convergence of the overall optimization process might bI,

lowered, or even become unstable, in the case where the bending

behavior is dominant in most of the elements. Tite reader i S r-

terred to sections 6. I and 6.5 for numerical Ixamples comp)ri r[1)"

the explicit approximations (8), (25) and (38).

4.2. Stress Constraints

The situation is much more delicate for stress constraints

than for displacement constraints. In contrast to the case of

thin walled structures modeled by bar and membrane elements, the

stress matrices are no longer constant in the case of flexion-

extension elements. For illustration consider again a flat shell

element. The stresses in the upper sheet can be computed in

terms of the generalized displacements hy

k  q = (T m) + a T(b))q = o(M) + (b) (44)
k k~ k k k k k

(m) (b)

where ok9 I)k U k are matrix representations ol the total

stress, membrane stress and bending stress tensors in member k,

nd Tk' T(m) (b)
k are the corresponding stress matrices, which

are independent of the design variables. Each displacement com-

ponent admits a first order explicit approximation of the form

(see Eq. 33)

n C.. d.
qj T i 1  + 1

i l a. 3
1 a.

I

Therefore, a natural choice for the approximation of a stress

component could be as follows:

n c. n C. . d.

0k - (---- + 1 ) + ak - ( + (45)
i~I a. 3 i1 a. 3

S a. a.
1 I1
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(M) ()
The terms containi ng c and d. arise from the membrane pa r L

(M) , j (b) (h)
of the stress 1k and those containing c.. and d I rom tht!

bending stress c (

kJ

The expression (43) is still a first order approXimation.

It is no longer separable, but keeps a simple algebraic form

suitable to specialized algorithms such as those based on dual

methods. However, when considering the true stress limitation

(e.g. upper limit on the Von Mises stress), the explicit cons-

traint becomes much more complicate. For these reasons, and

before finding something better, it has been decided to follow

the alternative strategy proposed at the end of section 4.1,

that is, to employ simple linear approximations ol the form (10).

To compute the gradient of the stress constraint with respect to

the reciprocal variables (9), we note that, from the equivalent

Von Mises stress

2 2 .2 1 12
Uek (u + a - a + 3 ) (46)

x y x y xY k

it comes

DO _ x I V
e (2 a - a ) - + (2 Y - ) Y + 6 xy_ (4 7)3x. 2x x y x. y x Ix. xy Dx. k1 1 1 2 2.

On the other hand, from (44) it follows that ile derivitive ol

any stress component , o or 'I has the foru
y xy

(f)
ok  q k3x =T k Jq 6 ( 4 8 )

)x. k Dx. ik 2t 1 X.
x

where 6. is the Kronecker symbol.
Lk

4.3. Frequency Constraints

Constraints on natural frequencies usually consist in imposing

lower limits

2 2
I w (a) 0 ,m (4 t
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They are directly written in terms of the squares of the lrt-

quencies, because these quantities naturally appear in the

eigenproblem characterizing the structural modal analysis

2

K qj - wZ M qj = 0 (B))

In this equation K and M represent the stiffness and mass matri-

ces, and (qj, j = I ,m) are tile modal displacements, i.e., the
J2

eigenvectors solution of (50), associated with eigenvalues

The structural mass matrix has a linear form in terms of the

design variables :

n ni M. +M = E a. + M (51)i= E c i=I 1i I

where M. and M are independent of the design variables. M.
1 C I

denotes the mass matrix of the ith element when a. = 1. M re-1 c

presents the contribution of the non-structural masses, such ,as

equipments, fuel, etc... It is well known that the first deri-

vatives of the frequencies with respect to the design variahls

are given by [ see for example Ref. [21, section 4.2 1

2
3w . 3K. M.

ji I 2 ) (52)Ta. m. j Ja. tj 3 a j( 2;
1 i i

where m. is the generalized mass of the jth modeJ

T
m. = qj M qj (53)mjJ

The way to derive first order explicit approximations of thc

frequency constraints is less apparent than for displacement cons-

traints. In this report, guided by the work done in Ref 1 2

(section 4.2), the following decomposition of the eigenvalues in

terms of the stiffness and mass contributions of each elemeiit will

be used

2 2 m. n
W.( + T m . q2(K W M )q (54)J 3 m. mn. i1=1q (i

j j

whe re
- T n T
mj qj Mc qj mj - El qj M i qj
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represents the coiitribution o the 11011 :,tru tiral masses to the

generalized :nass i. (s e 1q. ')) . By taki ng a cco nti 1 of th1e C x-

pIicit definitions (37) oi L!t ; tiffnes; matci:es K and (51)

of the mass matrices Mi , thi. i i;h qua Ii r" explicit approximatio,,s

of the frequency constraints .ke the form 1) w, with

m

.J + •+ - (

pj i Ip 2
--.--•----a: p = 1 ,2,3 (57)1. - 1 1.

where p = I only if p = 1 .I d is o ot hers'i.e.

ipp
The coefficients c . and the mdified limits u. are frozen to

their values at the current design point, lust as for the dis-

placement constraints, it is easily verified that the exprcssion.s

(38) remain first order explicit approxirmations satisfying (42,

43). As a matter of fact, they can be interpreted as first order

Taylor series expansions in terms of I/x., i/s., I/. considered

as independent variables.

4.4. Buckling Constraints

Just as the natural frequeni I es , the cri t i cal load fact ors

,. are defined through an ei genprotleni

K (I S q ')

where S represents the geometric stiffness matrix and (q,

j = I ,m) denote tile eigenve(t,)rs 501 i tic'n o 1)rob tlei (58), :iss

ciated with eigenvalues . .. lh, physicil iieaning of the q . s

Is that of displacements in the jth buckling r.ode , or a I t,-

cal load factor . . The buckling const r ai nt , consist in imposin,

lower limits on the buckling loids

.1 1, i

In this work. the following fo rm t .o ' 1ain ; wi l be

adopted
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h2 (a) % 7 - X. a U j = I, in ((,(j)
(a . A. (a

-J

because it has been found that better explicit approxinations

are generated when expanding the reciprocal of thc buckling'

loads rather then the A.'s themselves.
J

The stiffness matrix K has the form (23). The geometric

stiffness matrix is related to the initial stress state in tlhe

elements and therefore it depends imp i citly on al t1he d'sL ,II

variables

n
S = S (a) (6 )

It is worth recalling that the matrices S. are independent of1

the design variables for a statically determinate structure.

As explained in section 5.2 of Ref [ 2 , the first deriva-

tives of the buckling loads are given by

dx\. ,K.
q _ T _ _ 2S (62)a. T qj ( a a 2

i qj S qj

In opposition with the static and dynamic cases previously dis-

cussed, the derivatives appearing in (62) are not directly a-

vailable, because the elements of the geometrical stiffness ma-

trix are function of the stresses acting in the prebukling state..

Howe-:er, by assuming that the terms i are negligible, the gra-
a a

dients (62) become easily computable. This assumption, which is

typical of optimality criteria approaches for static constraints,

amounts to not taking into account the effects of structural

redundancy

_ =S 0 i 1 n (6)
,a.1

In this report,the following decomposition of the reciprocal

buckling loads in terms of the contribution of each element will

be used
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s. - - l qI . ,.i i

whe re
S (. .q L,

q 
(

Substituting the expIic it de ini t ) ith LtIIf3i l:;s !'.I-

trices K. into ( 64) yields th hi quai ty . it , I LV, 1 :) imI-1

tions of the buckling load con; ti a i nts ,, u , r tIt. i i ,

wi th

- I
U . - ; 6)

J \.
-I

"i ( p)

p qT K. q j 21

j S. I 3

Again, the coe t ficie1ts c . and tIe di J I ii v i t t rt
iI

frozen to their vaLues at the curr( nt desin p ii t lust I,

for the displacement and frequuncv otnu trat .i n , t v.i; vi]\ vt-

ri fi e. t l.1t the expr s.x1 ons (r t) are I ort Fa i , : c.ix p ,i t a 1)p ,,-

ximations f the cons t raint (10) , , i . I ii ( . , p,* r ov i dkd

that the assumption (1, ) can ht i cit , d i> "'to tui( gradient

(62) (statical determini!cy)v

'Ihe reason why the, buckli .A, :t i ILtt t I-t'r I L'tatLe d by ox-

panding the reciprocal crti ica Lcd; :,et .-, is t hIt, t c r

a thin walled structure, 'in a1))reo:..iviit i i li k es the I tmor

(8), whe re the c oC f f i c i u n: ts c C '1 1, [1 fti t , i l ,n the S c a I n

line. This property, which is w I I det i lId i'1 SUction I ii

Ret 2 1 , has been found very important i,r the case of stre,,s

and displacement constraints. (Ceo vtricsil lv i t means that thc

reat restraint surtace ii. (a) = ( is r, .,ct d hv a tantent s ir-

face h.(a) = 0 at its point 0f ifurseikion Cith tht. scal in,

line (see Fig. 3 of Rei. 12 1).
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5. S;LUTION OF TilE EXPI. CIT PROBI.L M

From the foregoing developments, it appears that , at tL, ah

stage of the optimization process, the follo wi i,. !;ublrh Ieii. I,',,

be solved

n

mini ize W = = I0. a. (,8)

ni 3 c.
subject to i --I Iu ap .

S al
I

a. a. % a. (70)

Unless the summation on p in (69) is restricted to a single

value of p (i.e. approx'mation of the form (25) with p = I 2

or 3), it is no longer possible to find intermediate variables

(i.e. x. given in (24) 1 in terms of which the explicit cons-1

traints (69) would be linear. Therefore, the primal solution

of problem (68-70) is more difficult to achieve if a gradient

projection type of algorithm is employed as in the mixed method

developed in a previous work for thin walled structures 1 1, P)

The expressions (69) are still explicit and they continue to ex-

hibit a simple algebraic form. Consequently a general purp,,se Op-

t imiza tion alg orihim such as NEIWSIJMT 1 10 I could ea I\ lic ad.iptc l toa

take the constraints (69) into account. However, )ecatisc they

are still additively separable, resorting to dual methods remains

probably the best strategy, just as in the case of thin walled

structures [1 , 2, 6, 8 1.

The minimization problem (68-70) can be solved efficiently

as an auxiliary maximization problem in the m lagrangian multi-

pliers r. associated with the explicit behavior constraints (69).J

This dual problem reads as follow 1 8 1 :

n m
maximize Z(r) = l . (r) + Y rj g (r) 71)

i j = l .

subject to r. 0 j I , mJ

whe re gj (r) denote the components of the dual fu,1-tion gr.ai i -n t

which are equal to the values of the primal consttaint; s
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8 - - -t ) I . (73)
7 '

h p 11 ria % i r A) I es . ) it I t I d I d 1 0.' 1 V 1iaI a1) 1 r

th ro U1,1h thC t oI , w , -n ia s i-so, :st Uait i 0 fiil I 1 atii pr i!

(See fU , L 1 xa plc )

(P)
m i n I. .iainimize 'I . a -* r -i__/. _ ui.) (74)

subject to a. a. " . (5)

Because of the sep rba ob I I i I t I a, I ml , it can be' decomnpos.,

into n cne-dimensionai m ini m i .at I -pr I c ms to1 the form

M i 't 76
-illI ," p. I 7

a.a. . . lP a.

wh e re P c (p 7P) = p r. ..'? (77)
i: j 1 1] .

Setting to zero the fi r-st derivative of th- single variable

function appeuring in 7) , it i:i .cc ,it t the 11 "active" de-

sign variables can be 1)bta Iud I $. v :Li' the nonlinear alge-

bra i c e uat i ons

) - ) )
I 1

Note however that when v n C C i , c. . c on t r a i n t (7')

must be Lakei into acco n1t .1:,I! ' ] , ,.;tlve t.Il values satisfy

equation (78), tIe one tha t ,hLI i : tI U1' junction (7f) must be

retained. Standard teciiniquc'.; c,in ,. e ,i pioyed to deal with Such

a simple one-dimensionao problc:i, ( sct . . . I i 1 I ).

In many cases , as 1 ? Vi oUS I V 1) IlL i. , at least one ul the

terms in the sam rgi ti .i. 1' il ( ",, ,1 a ( i ) (I i sap ) a rs, a Itd

it is p ossible to treat tie prohlen an:,' tica lv. As an its-

t r a t io n , cons id r ai n t'I ca s o1 L C c a I at S Ie I I ' I eme 1i t. wh r

the term in p is : 11ng. r b t o i? ) C.xhib its then tiie

form (omi tting thC i lI i )
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.1;-' " 4 (/9'

t.1Wh1ie 10at~ Cc (I.; IL 1LIK

- ( 80)

or, setting

(81

" :- "(82)

The constant known Lo b- ;'.'c j ,% and tevt ry thing depends

thus on tie sign f ti cn 11 n t and C , which repre-

sent the contribution ol the 1ebrane and tle bending, respec-

tively. In general, equation (8') admi tL; two solutions, and the

one that render., nin[ii - tiLc t uct ,,n t,'') rmust be adopted.

.ronl the orego v tui [ do>e o It s it appe a rs that th e dtal I

func tion ( 1) 7 ;n he n) u cc .d . I I nct i o t the dual var -

ables only. The dual iin (1 , 7._)) exhibits an

attractive feature, naime I " i q a,,;i-unconst rained problem,

because taking care , i V i,. w i ;, ic ,it iv: I Lonst raints (72) on the

dual variables i k . : i , n 1nnLgativC dulI

Va ri ab I s, L " 1 c (2 i ) !),i', i I 11 C, 'I :e u l pu teud by s , I-

V 1g 1 )1 ( ( 1 u d I :.I 1 k' U V I v u;l ted by ti-

si 11g 73 ). [le d Ilo i I I !I tI, .l ia T I Jrs d e 1i t (7 3) arc then

dire tlv known a.d a u V,,- i ic , ct. ii t- ,t rec Lion can therefore be

determined. [n a secotd otrdet ;I , i h i , tle hessian matrix of the

dual f unit L ion haIs to he ],npuLekd

= H .. . . (83 )
kr

k  rk

From (3), it ome;

(p

', - i t, I p . k1 L(84
K Ia. k

and by di t ferentiating thc defi :i ti 0n (78) oI a ( r) with respect

to rk it foll ows that-



" ( , ' p :.: -) ... + ::I - + I 0 (8,))
i t I (I au 7)

I I

On thle ot~her iarid, i. .- t~a. l\' s<,,,' fron: (7)' thait

k

RegroLping terms, i t i n< i b concIuded that the terms ol

the hessian matri:x ", g1 vci2 i : , -ti- 3 a (p) -
.p 1 P C 3 - )( -' P C k a

H jk ' 1IL P= I ~ ik i - ,7
S) I.. I

where the summation of I i c . ctic ted to the n at Live primalI

variables ht, that t h o Th1aci .10 t ixed to I lower or an

upper limit (of course 0 ftor a pa.,-sivc variable). Knowin)g
I-k

the gradient (73) and the hes i an matrix (87) 1urni shes the

Newton search direcLion

I ( ,88)

The next dual. point is L he, :'t ven I, v

l" = : 8 9

where i is thu s t p : . , 1, g : diruc t ion t. Mt

often a regul a-r Newtu . . '- in (9)j is s-

leeted . however, the vaL i i ,: ,. L i':,'s he lowert-I t o

prevent one of the di-ail , .l i r':,! - bec(m i ng negative 6

The second order dul optiti i mr I(pi mented in SAMCEF I 18

has been ealeci Nlly devi -ed s, Th t i ' -. oks the maximum l1 the

dual function by opet it ig £1 a i ei en. ii a)t dual subspaces wi th

gradually increasing dimoo, ein. lii thi waty, the effective di-

mensionality o th)e mi:, i in, I "'t .'ll i , r,) 1 ci: navc r exceeds the num-

ber of active behav;'r o nfS L- -tin Ls, whi ch co r r c s pond to noil-

zero dual variables. P,it experience with thin waIlled structures

indicate that this ninlher i.; :elativclv small in practice, which

explains the remarkabc v i i encV of tht' dual method 1 6 1 or
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gene r~t I ize'd p inai I j - t c! j , pp r o a c I

The ba,; I secoid I Cier it;,:, tt. t i ft roducei in

8 1 niJ e Iplu ved aI i :. L i :w ... L c. iid the t! p len'1 th

that maximizes t h ,iv l U i t L .'Ii Io1 ; 1 the se li (.1 direction.

Subsequent iv the a lg.,i thn 1-i' Ll , ,1 ' riit rodiuci ng , a s imp i -

fied line search prc edur w 'oh , t t>' : mmgth is a do pted

most of tile Lime. A det di Iied C r L!t , of thi s algori thm

can be found in Ret b I o n I , i i i i n c I u d i n g t 11e

treatment of explicit 1. ,Ltr t I ii ,t h( Ir'i (69) is very si-

milar. The only diffeienee:+e '1 o computing the primal

variables in terms o t cih d.i .; sIt -q. (70,78)1 and

tLhe tormula empi o\ ed 1o% ,r t i, , I I;tiX I :;ee Lq ( 7)j I It

should however b., re.,nczed , . I i:l diI ticul ties miyht

occur due to the lack at ce:,., tc L t iL e C- I iC c ionstraint s

(69). Indeed it is pc)ssibl, t .t 11 s' c 1;it Ion of I L.I (76) for a

primal variable suddenly j u :ip: I oi.: a fi xed lower or upper bound

to a free value when the dual hIri aes *,re sligh tly modified.

This phenomenon, which means tL10t tIe duaT function first deri-

vatives are discontinuous alan: ." ', surfaces, needC(s more inves-

tigaLion.



6. NUMERICAL APPLICATIONS

All the examples presented involve rather sophistic:ted

flat shell elements that are characterized by a displacement

field cubic in extension and quintic in flexion (hybrid qua-

drangular flat shell) 1 18 1.

6.1. Cantilever Beam with End Moment

The first example is concerned with a cantilever beam loadud

with a concentrated moment at its free end I see Fig. 2 1. This

problem has been previously solved numerically by PRASAD and

IIAFTKA 119 ] using an extended interior penalty [unction for-

mulation for a beam havin.g the following properties : length

10 in, width = I in, applied moment = 540 in.lb , Young's modu-

lus = I0 7  psi, Poisson's ratio = 0.3 and mass density = 0.3 lb/in 3

There exists also an analytical solution, which was obtained by

HAUG 1 20 J . The analytical optimum design for a displacement

limit of 0.5 in at the free end and specified allowable stresses

of 30,000 psi is as follows (see Fig. 2)

a(x) = 0.30 for 0 < x < 2.3 (90)

a(x) = 0.244 x1 / 4  for 2.3 < x < 10 (91)

It is worth noticing that the beam being statically determinat,

the redesign relation (31) is exact (with p = 3) and reduces to

(90, 91). Therefore the optimal solution should be generated

after one structural analysis only.

The structure is discretized using 20 quadrilateral plate

bending finite elements as indicated in Fig. 2. There is no

design variable linking and the problem involves thus 20 inde-

pendent design variables. The problem was first solved by using

the cubic expansions (25) with p = 3 and the dual algorithm des-

cribed in section 5. As previously stated, because the structure

is statically determinate, the explicit problem (68-70) is eXact

and the optimum design is obtained in one single analysis what-

0
ever may be the initial thickness a . Then, the same example
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was again solved by us i nig the II ;oa r i:opa io n s) wir, aln i1)i-

Li.1 1 th1ic 'k ,t- I ( , I sk:S U n a t ;n ap r ,x i not;itec e xp i Ci t

problem of tile form (14-1). 1'h, i t raIL i n his tory is giv n in

Tab le I It can be oee n t h, Ii ,, pri si t V, e noigh , tIe use o

sinpl linear expansis ivtu:i s I' L to satisIaLtor , resul it L

The two final design s 1,bt.i ne i are lis t.d in Table 2, toge-

ther with the analyt i ,l I ,L[ul io;i c orresponding to -qs. (90, 91)

and the numerical res l,.lts ,, :A . A close areement bet-

ween all the Iinal Opt !,nlj , 1', 1 1) ui t be (s rved.

6.2. Simply Supported ,q L1ir I..i ii 1)CIflCction Constraint

The second example c,'n2 i " :i:.,iuiii zin, the weight of th e

simply supported square plat 1 , on i . 3. It is subjcted

to a concentrated load of lOW) . II i t s, center, where the de-

flection is limited to 0.L,' . ., : ifle; try ,nly a quarter of

the plate h1as t , be anal\'/e. Ze k osh i iolves 2) plate ele-

ments and 175 degrees of treedm, ie saterial properties a re

as tol lows : Young's modulus . . 11 i, o s is n' s ratio

0. 3 and weight density L' h I dimensions of

the plate are 10 11 b, 0 m. i i, ,iiti L i tti I kn .,L s is a 0 li.0' t

and the minimum thickness i ( A . t ) tie prob lem i n-

volves only one behavior cii- tria ' , !I, ' ,i -',ii elations (1

ca n be applied with p : . I ; .', t' bing sLit i-

:al ly inrdeterminate, the, ' t; ,t so C , ecu r !; IVt' ,I . 'I'llu'

iteration history datai r, i ' , ld tie i inal desi,',n

is illustrated in F i.g. C _ 1n1i g ou t Lth at on] y

10 reanalyses art' suffici.I, t :lo 1 .iL, a nearly converged so-

lution, while in a similar pri, lem solvtd in Ref 1 12 ) by usin,"

p = 2 in the redesign relati,,-, ( 1i), almost n0 iterations were

requi red.

b.3. Simply Supported Iquare Plate with Frequency Constraint

Attention is now focuset k,,'i the :ninply supported square plate

shown in Fig. 4. This example is taken from Ref 2! I anid it. is
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concerned with the minimum weight design of the plate subject

to a natural frequency constraint. The dimensions of the plate

are 10 in by 10 in and its material properties are Young's mo-

dulus = 30 x 10l6 b/in 2  and Poisson's ratio 0.3. In Ref 121 1

i't is stated that the uniform plate with p = 1400 is taken as

the initial estimate to the optimization problem, where p is the

mass density and w,the minimum fundamental frequency. Therefore,

in the present study, assuming steel material with mass density

p = 0.283 lin 3 , the minimum frequency was chosen as. v ./

11.2 Hz. Iteration history data are presented in Table 4 for

three cases differing by the minimum thickness constraint (a = 0.1,

0.05 and 0.001 in). The initial design in cases I and 3 corres-
0 0ponds to a uniform thickness a = 0.2 in, while in case 2, ao

equals 0. 12 in. Final aesigns are illustrated in Fig. 4. By

symmetry only a quadrant of the plate has to be analyzed and

designed. It can be ohserved that the design obtained in Ref

[21 ] is different from the design achieved in this study (case 1).

However both designs have about the same weight (0.765 Ib and

0.752 ib). It is also worth pointing out that the design of pil,-

tes in bending is an analytically difficult problem, leading to

multiple local optima and suggesting that the optimal plate should

be made up of an infinite number of stiffeners 1 22 •

6.4. I-beam Structure

The third example involves the I-beam structure schematLized

in Fig. 5. The problem consists in minimizing the weight ol the

beam while imposing lower bounds on the frequencies of the three

first eigenmodes : flange flexion, torsion and web flexion. )e-

tailed data can be found in Ref. 1 2 1 . In a first optimization

exercise, a pure membrane model was employed. It involves 35

second degree displacement elements, including 10 fictitious

diaphragms (without masses). These dummy members are introduced

to obtain a satisfactory representation of the torsional mode.

Only 5 analyses are sufficient to generate an optimum design for

this membrane model.
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However, when this final design was analyzed by using a more

accurate model made up of flat shell elements, the torsional fre-

quency (mode 2) was seen to be violated by 10 7. Thereiore th1).

problem was again solved with th i ,. Mdt I , by l ,sortir, t , tii

theory proposed in section 4.3 and to the dual optimizer descri-

bed in section 5. Iteration history data are illustrated in

Fig. 5 and the final designs are given in Table . for both finite

element models of the I-beam. It can be seen that the use of

flat shell elements, although yielding slower convergence, gives

satisfactory results.

6.5. U-beam Structure

In an attempt to consider ai case where both flexion and ex-

tension loadings play an equally important role, the U-beam

structure depicted in Fig. 6 was optimized. The 2000 kg load

acting at the tip produces torsion of the beam. As a result the

upper flange behaves mainly in flexion, the web, in extension,

and the lower flange, both in flexion and extension. For sim-

plicity, only displacement constraints are considered : the tip

deflection is limited to 0.1 m, while the relative lateral dis-

placement is limited to 0.005 m (see Fig. 6). Three different

methods are employed, which di tfet by the explicit approximations

used for the displacement cvnstr.ints :

IS v I full expansion (.3 1), yielding problem (68-70) with

p = I and 3 only tii, tur-ic in p = 2 being zero)

case 2 linear expansion 2 with p 1), yielding problem

(1 4-1Ib)

case 3 cubic expansion (25 with p 3).

lhe iteration history data arc ,,i ven in i'ab te and tihe final

designs in Table 7.

It is interesting to notice that the three methods giv.

similarly good results, which ;usggests that the use of simple



linear Taylor series expansion in terms of the reciprocal design

variables might be a good strategy for most of the structural

optimization problems. This idea was previously stated by AUSTIN

[ 23 1, but not believed valid by many people when he publiished

his paper



7 . CON CLUS I ONS AND RECOMMAN DAT I uNS

It is now widely recogniz,.d that a powerful and rather ge-

neral approach to structural op t imi vat in i s achi eved by re pla-

cing the original problem witi, a sequence of explicit approxi-

mate problems. This approach was initially conceived for thin

walled structures modelled by bar aind nembrane finite elements,

as well in the context of optimalitv criteria techniques as in

the framework of mathematical programming methods using appro.I-

mation concepts. It has been extended in this work to deal with

structural systems made up (,I beam, plate and fla t shell eleme: .t

with behavior constraints placed on Jisplacements, stresses, na-

tural frequencies and critical bucklin; loads. [he method pre-

sented uses a second order dual algorithm to solve each explicit

subproblem. The convergence properties are independent of the

number of design variables, which is typical of optimality cri-

teria types of approach as well as linearization techniques in

mathematical programming. As a result large structural systems

can be treated at the expense ut a few finite element analyses.

Several difficult points remain to be clarified. First it

is not well known whether the explicit problem can be solved

conveniently in any case, because its lack ot convexity mi,,ht

lead to discontinuity in the dual function gradient. Secondly,

the use of simple linear expansions with respect to the recipro-

cals of the element transverse sizes, ,ives rise to satisfactory

results in many cases. This suggests that more complicate expli-

cit approximations such as those proposed in this work might not

be necessary. Finally, there remains the question of the stress

constraints, for which it is difficult to generate adequate first

order explicit approximations. Also stress-ratioing algorithms

should be considered for extension-flexion elements, because they

correspond to much more inexpensive zero order approximations.
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lab le I I te rat ion H is L ) v Da t, to I- ant I i t a, m

A ;ay is in ear I-xp ansi(3 a ub '

No 14e i gilt ()nfIec Iei)ght )) Iec ioi
(lb) (1 lb n

1 1 .5000 0.2147 1 . 5000 0. 2 47

2 1.0797 0.4996 0.9938 0.6715

3 I .0797 0.5000 1.0660 0.5.68

4 1 0760 0.3 104

5 I 0764 I) .5090

S1.0766 0. )09 1

7 1 0767 0 5088

8 1 0768 0 5084

IBM 370-! I

!CPu time 92 255

(sec)



'fable 2 Final Designs for Cantilever Beam

Element Thickness (in)

No. Analytical Ref [ 19 ] l.inear 11ubic
Ref [20] Expansion Fxpansion

1 0.3 0.3004 0.3 0.3

2 0. 3 0.3006 0. 3 0. 3

3 0.3 0.3018 0.3 0.3

4 0.3 0.3056 0.3 0. 3

5 0.3 0.3109 0.3 0.3

6 0.3142 0.3167 0.3167 o.3130

7 0.3276 0.3231 0.3287 0.3270

8 0.3396 0.3298 0.3327 0.3389

9 0.3503 0.3367 0.3350 0.3497

10 0.3602 0.3437 0.3379 0.3596

11 0.3693 0.3508 0.3450 0.3b87

12 0.3778 0.3579 0.3574 0.3771

13 0.3858 0.3652 0.3711 0.3851

14 0.3933 0.3726 0.3851 0.3926

15 0.4004 0.3803 0.3989 0.3996

16 0.4071 0.3881 0.4121 0.4061

17 0.4135 0.3960 0.4246 0.4126

18 0.4197 0.4040 0.4358 0.4182

19 0.4255 0.4119 0.4446 0.4225

20 0.4312 0.4197 0.4533 0.4268

Weight 1.0750 1.0453 1.0768 1.0797
(ib)

No. of ? 8 2

Analyses



Lab 1r I t ra tio i is to rv Da ta or Pqua lat wi tit

De flectioi Constraint

AnaiIysis WeightL vk)) Deflection (in)
No.

1 97 5 0.02029

2 875o 0.001602

3 7799 0.001892

4 759o 0.001958

5 7462 0.001960

6 7358 0.001964

7 7274 0.001980

8 7231 0.001989

9 7206 0 .0 01990

10 7180 0.01989

[BM 370-158

CPU time 250
(sec)



Table 4 Iteration History Data fol Square Plate

with Frequency Constraint

Analysis Case I a = 0. 1 in Case 2 a = 0.05 in Case 3: a = 0 . 01 in
No. Weight Frequency weight Frequency weight Frequen(y

(ib) (Hz) (ib) (Hz) (Ib) (z)

1 1.415 19.6 0.849 11.8 1.415 19.5

2 1.097 16.0 0.786 11 .5 1.097 16.0

3 0.913 13.6 0.750 11.5 0.902 13.7

4 0.812 12.2 0.708 11.7 0.778 12.4

5 0.771 11.5 0.658 11.6 0.696 11.9

6 0.757 1 1 . 3 0.631 11 .4 0.647 11 .5

7 0.753 11.2 0.617 11.3 0.622 11.4

8 0.752 11 2 0.605 11.3 0.604 11.4

9 0.752 11.2 0.596 11.3 0.588 11.4

I0 0.589 11.3 0.574 1 . 3

11 0.583 11 .3 0.559 1 1 .4

12 0.577 11.3 0.542 11.4

13 0.521 11 .3

IBM 370-158

CPU time 218 276 307

(sec)



Table 5 Final Designs for I-beam Structure

[membrane model

thickness (mm) flat shell model

Upper Flange

15.80 17.30 11 .67 6. 1443 1 81 )

16.59 15.09 10.08 5 .090 1 .363

5. 101 3.602 3.329 13.294 1 .997

2.056 4 .173 3.965 3. 936 2 313

Supported

Lower Flange

15.40 17.0.1 1 1. 5 6.074 I . 792

20.51 17.98 i2.21 6.480 1 .91()
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Table 7 Final Designs for U-Beam Structure

(Case I : Ful l Expansion
Thickness (mm) a:e 2 Linear I xpan:;in,,

C 8List CU h ( i C F: a!] p~ S i ,, I

r21 .6 1 61 0 96 0 2
Upper r

2 1 .2 , 6 4 1 1.2 ,' 57 2 .27
21 2 16 .4 10.8 [5 82 2 .39

I I I

II

1 .11.81 -4 3 7 1 Frve

170 138 9 .96 6.0 2 7. 1

L owe r F24 .6 [22.5 [19 .4 [23.5 17.9

F Ia n ge f50 234 20ill3.6
_3.0 : 2 7 1_22 .8 1



a2  - - real restrat.nt surface
'--approximate restraint surface

anai~sts / h(a)=O

anal

monn pot Lri l

fcnie element model
19_ _ _ _ _ A817 61:41:21 0t918 7 5 4 3.

20 bendtng plate elements
220 degrees of freedom

FIG. 2 CANTILEVER BEAM WITH END MOMENT

final design(1/.) thicknesses (m)

symmetrical I
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SIMPLY SUPPORTED SQUARE PLATEFIG. 3 WITH DEFLECTION CONSTRAINT
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